Home
Class 12
MATHS
F=int(0)^(1000)e^(x-tx])dx...

F=int_(0)^(1000)e^(x-tx])dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1000)e^(x-[x])dx

int_(0)^(1000)e^(x-[x])dx=

The value of int_(0)^(1000)e^(x-[x])dx is equal to -

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(1000) e^(x - [x]) dx (where [.] is the greatest integer function) equals

int_0^1000 e^(x-[x])dx

int_0^1000 e^(x-[x]) dx is equal to

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .