Home
Class 13
MATHS
[" If "lim(x rarr1)(x^(4)-1)/(x-1)=lim(x...

[" If "lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))," then "k" is : "],[[" (1) "(3)/(2)," (2) "(4)/(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

Find value of a if lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr a)(x^(3)-a^(3))/(x^(2)-a^(2))

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

Find the value of k, if lim_(x rarr 1) (x^(4)-1)/(x-1) = lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

lim_(x rarr1)(x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1)

lim_(x rarr oo)(1+(K)/(x))^(x)=

lim_(x rarr1)((x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1))