Home
Class 12
MATHS
(ix)sin^(-1){(sqrt(1+x)+sqrt(1-x))/(sqrt...

(ix)sin^(-1){(sqrt(1+x)+sqrt(1-x))/(sqrt(2))},0

Promotional Banner

Similar Questions

Explore conceptually related problems

Write each of the following in the simplest form: (i) sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0 < x <1 (ii) sin{2tan^(-1)(sqrt((1-x)/(1+x)))}

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

Differentiate 'tan^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))},darr backslash0

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Differentiate w.r.t x : tan^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .