Home
Class 12
MATHS
[" Minimum value of "(sec^(4)alpha)/(tan...

[" Minimum value of "(sec^(4)alpha)/(tan^(2)beta)+(sec^(4)beta)/(tan^(2)alpha);alpha,beta!=(K pi)/(2),K in I],[" a) "5quad " b) "0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha), where alpha!=pi/2,beta!=pi/2 ,0

Minimum value of (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha), where alpha!=pi/2,beta!=pi/2 ,0

Minimum value of (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha), where alpha!=pi/2,beta!=pi/2 ,0

Minimum value of (sec^(4)alpha)/(tan^(2)beta)+(sec^(4)beta)/(tan^(2)alpha), where alpha!=(pi)/(2),beta!=(pi)/(2),0

The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if

If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.

The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec^2(1/2tan^(-1)(beta/alpha))i s equal to