Home
Class 11
MATHS
[A={x/-1<=x<=1},f(x)=x^(2),g(x)=x^(3)," ...

[A={x/-1<=x<=1},f(x)=x^(2),g(x)=x^(3)," which of the following are surjections "],[" i) "f:A rarr Aquad " ii) "g:A rarr A]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

f(x)={(|x^2-1|)/(x-1),\ \ \ for x!=1 \ \ \ \ 2, for \ x=1 at x=1

Examine the continuity of f(x) = {(|x-1|/(x-1), x ne 1),(0, x =1):} at x = 1

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

Let f(x)={(|x+1|)/(tan^(-1)(x+1)),x!=-1,1,x!=-1 Then f(x) is

Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is

f(x)={{:((x-1)/(x+1)", "xne1),(lamda-1","x=1):} at x = 1.

If f(x)=|[1,2(x-1),3(x-1)(x-2)],[x-1,(x-1)(x-2),(x-1)(x-2)(x-3)],[x,x(x-1),x(x-1)(x-2)]| . Then, the value of f(2020) is