Home
Class 11
MATHS
If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P. p...

If `(b-c)^2,(c-a)^2,(a-b)^2` are in A.P. prove that `1/(b-c),1/(c-a),1/(a-b),` are in A.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a-c)^2,(c-a)^2,(a-b)^2 are in A.P.,prove that 1/(b-c),1/(c-a),1/(a-b) are in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P. show that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If a^2,b^2,c^2 are in A.P. prove that 1/(b+c),1/(c+a),1/(a+b) are in A.P.

If a^2,b^2,c^2 are in A.P. prove that 1/(b+c),1/(c+a),1/(a+b) are in A.P.

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then prove that (1)/(b-c),(1)/(c-a),(1)/(a-b) are also in A.P.