Home
Class 10
MATHS
ABCD is a rectangular figure, joining A,...

ABCD is a rectangular figure, joining A, C prove that
`tan^(2)angleCAD+1=(1)/(sin^(2)angleBAC)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

ABCD is a rectangular figure, joining A, C prove that tanangleACD=cotangleACB

ABCD is a rectangle of which AC is a diagonal .The value of (tan^(2)angleCAD+1)sin^(2)angleBAC is

Prove that : (i) sin(tan^(-1)1) = 1/(sqrt(2))

Prove that : sin(tan^(-1)1) = 1/sqrt2

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

If sin^4 A + sin^2 A=1 , prove that: tan^4 A - tan^2 A =1

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

If sin^(4)A+sin^(2)A=1, prove that: tan^(4)A-tan^(2)A=1

If sin^(4)A+sin^(2)A=1 then prove that (1)/(tan^(4)A)+(1)/(tan^(2)A)=1