Home
Class 12
MATHS
Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^...

Evaluate: `inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

Statement-I: int e^(x) sinxdx=(e^(x))/(2)(sinx-cosx)+c Statement-II: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+c

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is varphi(x)= e^xf(x)

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: inte^x x^x(2+logx)= (A) e^x x^xlogx+C (B) e^x+x^x+C (C) e^x x(logx)^2+C (D) e^x.x^x+C

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: inte^x x^x(2+logx)= (A) e^x x^xlogx+C (B) e^x+x^x+C (C) e^x x(logx)^2+C (D) e^x.x^x+C

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int(e^x(2-x^2))/((1-x)sqrt(1-x^2))dx (A) e^xsqrt((1-x)/(1+x))+C (B) e^xsqrt((1+x)/(1-x))+C (C) e^xsqrt((2-x)/(2+x))+C (D) none of these