Home
Class 10
MATHS
g(x)=a(x^(2)+1)-x(a^(2)+1)...

g(x)=a(x^(2)+1)-x(a^(2)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(5)-1)(x^(3)+1),g(x)=(x^(2)-1)(x^(2)-x+1) and let h(x) be such that f(x)=g(x)h(x) . Then lim_(xto1)h(x) is

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If f (x) = (x ^(5) - 1 ) (x ^(3) + 1), g (x) = (x ^(2) - 1 ) (x ^(2) - x + 1 ) and h (x) be such that f (x) = g (x) h (x), then lim _( x to 1) h (x) is

((f)/(g))(x)=(x^(2))/(2x+1),x!=-(1)/(2)why?

If ((x- 1)^(2))/((x^(2) +1)^(2)) dx = tan^(-1) x + g (x) + c then g (x) =

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to