Home
Class 12
MATHS
If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1...

If `I_1=int_0^1(e^x)/(1+x) dx`aand `I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx` then `I_1/I_2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

L e tI_1=int_0^1(e^xdx)/(1+x) a n dI_2=int_0^1(x^2dx)/(e^(x^3)(2-x^3))dot tehn (I_1)/(I_2) is equal to (a)3/e (b) e/3 (c) 3e (d) 1/(3e)

L e tI_1=int_0^1(e^xdx)/(1+x) a n dI_2=int_0^1(x^2dx)/(e^(x^3)(2-x^3))dot tehn (I_1)/(I_2) is equal to (a)3/e (b) e/3 (c) 3e (d) 1/(3e)

Let I_1=int_0^1 e^x/(1+x)dx and I_2=int_0^1(x^2e^(x^2))/(2-x^3)dx Statement-1: I_1/I_2=3e Statement-2: int_a^b f(x)dx=int_a^b f(a+b-x)dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

Let I_1=int_0^1 e^x/(1+x)dx and I_2=int_0^1(x^2e^(x^2))/(2-x^3)dx Statement-1: I_1/I_2=3e Statement-2: int_a^b f(x)dx=int_a^b f(a+b-x)dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s