Home
Class 12
MATHS
Let f(x)=minimum {|x|,1-|x|,1/4} for xep...

Let `f(x)=`minimum `{|x|,1-|x|,1/4}` for `xepsilonR` then the value of `int_-1^1f(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=min(|x|,1-|x|,(1)/(4))AA x in R, then find the value of int_(-1)^(1)f(x)dx

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

If f(x)=min_(1){|x-1|,|x|,|x+1|, then the value of int_(-1)^(1)f(x)dx is equal to

If int_[x]^(x+1) f(t)dt =[x] then th value of int_(-2)^4 f(x) dx is equal

If f(x)=max{x^(2),(1-x)^(2),(3)/(4)},x in[0,1] then the value of of int_(0)^(1)f(x)dx is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to