Home
Class 11
MATHS
यदि y=x+x^(2)+x^(3)+ ….. oo तथा |x| lt 1...

यदि `y=x+x^(2)+x^(3)+ ….. oo` तथा `|x| lt 1`, तो सिद्ध कीजिए कि `x=(y)/(1+y)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if y = x + x^(2) + x^(3) + …oo, where |x| lt 1, then for |y| lt 1, (dx)/(dy) is equal to

"If "y=x+x^(2)+x^(3)+...oo and |x|lt1, "then prove that "x=(y)/(1+y).

"If "y=x+x^(2)+x^(3)+...oo and |x|lt1, "then prove that "x=(y)/(1+y).

If y=x+x^(2)+x^(3)+....oo"where" |x|lt1" prove that " x=(y)/(1+y) .

If y=x+x^(2)+x^(3)+…oo where |x| lt 1 , then for |y| lt 1 the value of (dx)/(dy) is equal to -

If y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^(3)) + ……..+oo with |x| gt 1 then (dy)/(dx) is .

If y=1+(1)/(x)+(1)/(x^(2))+(1)/(x^(3))+… to oo with |x|gt 1 then (dy)/(dx)=

If |x| lt 1, y = x - x^(2) + x^(3) - x^(4) + ….. , the value of x in terms of y is

2x - y gt 1 , x - 2y lt 1