Home
Class 12
MATHS
If a = sqrt3, b = (1)/(2) (sqrt6 + sqrt2...

If `a = sqrt3, b = (1)/(2) (sqrt6 + sqrt2), and c = sqrt2`, then find `angle A`

Text Solution

AI Generated Solution

To find angle A in the triangle with given sides \( a = \sqrt{3} \), \( b = \frac{1}{2}(\sqrt{6} + \sqrt{2}) \), and \( c = \sqrt{2} \), we will use the cosine rule. ### Step-by-Step Solution: 1. **Write down the cosine rule formula**: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

If a=sqrt(3),b=(1)/(2)(sqrt(6)+sqrt(2))* and c=2 then find /_A

If quad sqrt(6)-sqrt(3),b=sqrt(3)-sqrt(2) and c=sqrt(2)-sqrt(6), then find the value of a^(3)+b^(3)+c^(3)-2abc.

Evaluate : sqrt(6)/( sqrt(2) + sqrt(3) )

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) then what is the value of a^2/b+b^2/a ?

If a=(sqrt3+ sqrt2)/(sqrt3- sqrt2) and b=(sqrt3- sqrt2)/(sqrt3+sqrt2) , then what is the value of a^2+b^2-ab ?