Home
Class 12
MATHS
In a triangle ABC, if the sides a,b,c, a...

In a triangle ABC, if the sides a,b,c, are roots of `x^3-11 x^2+38 x-40=0,` then find the value of `(cosA)/a+(cosB)/b+(cosC)/c`

Text Solution

Verified by Experts

Here a, b, c are roots of equation `x^(3) - 11 x^(2) + 38 x - 40 = 0` Therefore,
`a + b + c = 11, ab + bc + ac = 38, and abc = 40`
`rArr (cos A)/(a) + (cos B)/(b) + (cos C)/(c) = (a^(2) + b^(2) + c^(2))/(2 abc)`
`= ((a + b + c)^(2) - 2 (ab + bc + ac))/(2abc)`
`= (11^(2) - 76)/(80) = (45)/(80) = (9)/(16)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

In a Delta ABC, the side a, b, and c are such that they are roots of x^(3) -11x ^(2) +38x -40=0. Then the value of (cos A)/(a )+ (cos B)/(b)+ (cos C)/(c ).

If the sides a, b, c of a triangle ABC are the roots of the equation x^(3)-13x^(2)+54x-72=0 , then the value of (cosA)/(a)+(cosB)/(b)+(cosC)/(c ) is equal to :

If in a triangle ABC a,b,are roots of the equation x^(3)-11x^(2)+38x-40=0 then sum(cos A)/(a) equal to:

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

In triangle ABC , if a=3, b=4, and c=5, then find the value of cosA.