Home
Class 12
MATHS
For any triangle ABC, prove that a(bcosC...

For any triangle ABC, prove that `a(bcosC-ccosB)=b^2-c^2`

Text Solution

Verified by Experts

`a (b cos C - c cos B)`
`=(b cos C + c cos B) (b cos C - c cos B)`
`= b^(2) cos^(2) C - c^(2) cos^(2) B`
`= b^(2)cos^(2) C -c^(2) B`
`= b^(2) - c^(2) - (b^(2) sin^(2) C - c^(2) sin^(2) B)`
`= b^(2) - c^(2)` [as by the sine rule, `b sin C = c sin B`]
Alternativey, using cos B and cos C formulae, we can prove the result
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

With usual notatons , in triangle ABC , prove that a(bcosC-c cos B)=b^2-c^2 .

In any Delta ABC, prove that :a(b cos C-c cos B)=b^(2)-c^(2)

In any DeltaABC , prove that a(bcosC-c cosB)=(b^(2)-c^(2))

In DeltaABC , prove that: a(bcosC-(c)cosB)=b^(2)-c^(2)

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))