Home
Class 12
MATHS
In a triangle ABC, if (cosA)/a=(cosB)/b=...

In a triangle ABC, if `(cosA)/a=(cosB)/b=(cosC)/c` and the side `a =2`, then area of triangle is

Text Solution

Verified by Experts

The correct Answer is:
`sqrt3` sq. unit

`(cos A)/(a) = (cos B)/(b) = (cos C)/(c)`
or `(cos A)/(2R sin A) = (cos B)/(2R sin B) = (cos C)/(2R sin C)`
or `tan A = tan B = tan C`
Hence, triangle is equilateral.
Therefore, Area of triangle `= (sqrt3)/(4) a^(2) = sqrt3` (as a = 2)
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,if (cos A)/(a)=(cos B)/(b)=(cos C)/(c) and the side a=2 then area of triangle is and the side a=2

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is