Home
Class 12
MATHS
In triangle ABC, if cos^(2)A + cos^(2)B ...

In triangle ABC, if `cos^(2)A + cos^(2)B - cos^(2) C = 1`, then identify the type of the triangle

Text Solution

Verified by Experts

The correct Answer is:
Right angled triangle

`cos^(2) A + cos^(2) B - cos^(2) C = 1`
or `1 - sin^(2) A + 1 - sin^(2) B - 1 + sin^(2) C = 1`
or `sin^(2) A + sin^(2) B = sin^(2) C rArr a^(2) + b^(2) = c^(2)`
Thus, the triangle is right angled at C
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,cos^(2)A+cos^(2)B+cos^(2)C=

In triangle ABC, cos^2A + cos^2B - cos^2C = 1, then the triangle is necessarily

If cos^(2)A+cos^(2)B+cos^(2)C=1 , then triangle ABC is

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

In a triangle ABC,cos A+cos B+cos C

Prove that in triangle ABC , cos^(2)A + cos^(2)B + cos^(2)C lt 3/4 .

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, a cos A+b cos B+ c cos C=

In a triangle ABC ,cos A + cos B + cos C = 3/2 , then the triangle ,is