Home
Class 12
MATHS
Prove that b^(2) cos 2 A - a^(2) cos 2B ...

Prove that `b^(2) cos 2 A - a^(2) cos 2B = b^(2) -a^(2)`

Text Solution

Verified by Experts

`b^(2) cos 2A - a^(2) cos 2B`
`=b^(2) (1-2 sin^(2)A) - a^(2) (1 - 2 sin^(2) B)`
`= b^(2) - a^(2) - 2 (b^(2) sin^(2) B)`
`= b^(2) -a^(2) -2 (b^(2) sin^(2) A - a^(2) sin^(2) B) = b^(2) - a^(2) " " ( :' a sin B = b sin A)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

In any Delta ABC, prove that :(b^(2)-c^(2))cos2A+(c^(2)-a^(2))cos2B+(a^(2)-b^(2))cos2C=0

In any DeltaABC , prove that (cos2A)/a^(2)-(cos2B)/b^(2)=(1/a^(2)-1/b^(2))

In /_ABC prove that (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

In any Delta ABC, prove that :(b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

Prove that a(b cos C- os B)=b^(2)-c^(2)

In Delta ABC, prove that (b^(2)-c^(2))/(a)cos A + (c^(2)-a^(2))/(b)cos B + (a^(2) - b^(2))/(c) cos C = 0

If tan A tan B=sqrt((a-b)/(a+b)), prove that (a-b cos2A)(a-b cos2B)=a^(2)-b^(2)

Prove that: (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)backslash(A-B)/(2)

Prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))