Home
Class 12
MATHS
For any triangle ABC, prove that (b^2 c^...

For any triangle ABC, prove that `(b^2 c^2)"\ cot"A"\ "+"\ "(c^2 a^2)"\ cot"B"\ "+"\ "(a^2 b^2)"\ cot"C"\ "="\ "0`

Text Solution

Verified by Experts

Since `a = 2R sin A, b = 2R sin B, and c = 2R sin C`, we have
`(b^(2) -c^(2)) cot A = 4R^(2) (sin^(2) B - sin^(2) C) cot A`
`=4R^(2) sin(B + C) sin (B - C) cot A`
`= 4R^(2) sin A sin (B - C) (cos A)/(sin A)`
`= -4R^(2) sin (B - C) cos (B + C) " " ( :' cos A = - cos (B + C))`
`= -2R^(2) [2 sin (B - C) cos (B + C)]`
`= -2R^(2) [sin 2B - sin 2C]`(i)
Similarly, `(c^(2) -a^(2)) cot B = - 2R^(2) [sin 2 C - sin 2A]` (ii)
and `(a^(2) -b^(2)) cot C = -2R^(2) [sin 2A - sin 2B]` (iii)
Adding Eqs. (i), (ii), and (iii), we get
`(b^(2) - c^(2)) cot A + (c^(2) - a^(2)) cot B + (a^(2) - b^(2)) cot C = 0`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that: Delta=(b^(2)+c^(2)-a^(2))/(4cot a)

In a ABC, prove that: (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(a^(2)-b^(2))cot C=0

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

In any /_ABC, prove that (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(c^(a)-b^(2))cot C=0

In any Delta ABC, prove that Delta=(b^(2)+c^(2)-a^(2))/(4cot A)

In a triangle ABC,if a cot A+b cot B+c cot C=

In any triangle ABC, prove that: (b-c)cot(A)/(2)+(c-a)cot(B)/(2)+(a-b)cot(C)/(2)=0

In any triangle ABC,a cot A+b cot B+c cot C is equal to

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1