Home
Class 12
MATHS
If the segments joining the points A(a ,...

If the segments joining the points `A(a , b)a n d\ B(c , d)` subtends an angle `theta` at the origin, prove that : `theta=(a c+b d)/((a^2+b^2)(c^2+d^2))`

Text Solution

Verified by Experts

Here `(AB)^(2) = (a - c)^(2) + (b -d)^(2)`
`(OA)^(2) = (a -0)^(2) + (b -0)^(2) = a^(2) + b^(2)`
and `(OB)^(2) = c^(2) + d^(2)`

Now in `Delta AOB`,
`cos theta = ((OA)^(2) + (OB)^(2) - (AB)^(2))/(2OA xx OB)`
`= (a^(2) + b^(2) + c^(2) + d^(2) - [(a -c)^(2) + (b -d)^(2)])/(2 sqrt(a^(2) + b^(2)) sqrt(c^(2) + d^(2)))`
`= (ac + bd)/(sqrt((a^(2) + b^(2)) (c^(2) + d^(2))))`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

If the segments joining the points A(a,b) and B(c,d) subtends an angle theta at the origin,prove that :theta=(ac+bd)/((a^(2)+b^(2))(c^(2)+d^(2)))

If the line segment joining the point A(a,b) and B(c,d) subtends an angle theta at the origin.Prove that cos theta=(ac+bd)/(sqrt((a^(2)+b^(2))*(c^(2)+d^(2))))

If the line segment joining the points A(a,b) and B(a, -b) subtends an angle theta at the origin, show that cos theta = (a^2 - b^2)/(a^2 +b^2) .

If the line segment joining the points A(a,b) and B(c,d) subtends an angle theta at the origin, then costheta is equal to

If the line segment joining the points A(a,b) and B (c, d) subtends a right angle at the origin, show that ac+bd=0

If the segment joining the points (a,b),(c,d) subtends a right angle at the origin,then

If a

If a sec theta-c tan theta=d and b sec theta+d tan theta=c ,then prove that (c^(2)+d^(2))^(2)-(ac-bd)^(2)=(ad+bc)^(2)

If a,b,c,d are in proportion then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)