Home
Class 12
MATHS
If in a triangle ABC, (bc)/(2 cos A) = b...

If in a triangle `ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A` then prove that the triangle must be isosceless

Text Solution

Verified by Experts

We have `(bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A = a^(2)`
`rArr cos A = (bc)/(2a^(2))`
`rArr (b^(2) + c^(2) -a^(2))/(2bc) = (bc)/(2a^(2))`
`rArr b^(2) c^(2) = a^(2) (b^(2) + c^(2) - a^(2))`
`rArr (a^(2) - b^(2)) (a^(2) - c^(2)) = 0`
`rArr a = b " or " a = c`
Hence, triangle is isosceles
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If in a triangle ABC,(2cos A)/(a)+(cos B)/(b)+(2cos C)/(b)=(a)/(bc)+(b)/(ca), then prove that the triangle is right angled.

If in a Delta ABC, c(a+b) cos B//2 = b(a+c) cos C//2 , prove that the triangle is isosceles.

In a triangle ABC,cos^(2)A+cos^(2)B+cos^(2)C=

In a Delta ABC if (a+b)cos((B)/(2))=b(a+c)cos((C)/(2)) then prove that the triangle ABC is isosceles.

In a triangle ABC,a^(2)cos^(2)A=b^(2)+c^(2) then triangle is

Prove that, in a triangle ABC, b(a cos C - c cos A) = a^2 - c^2

If in a triangle ABC, 2 (cos A)/(a) +(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca) then the value of the angle A is

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C