Home
Class 12
MATHS
If c^(2) = a^(2) + b^(2), then prove tha...

If `c^(2) = a^(2) + b^(2)`, then prove that `4s (s - a) (s - b) (s - c) = a^(2) b^(2)`

Text Solution

Verified by Experts

`c^(2) = a^(2) + b^(2)`
Triangle is right angled at vertex C. Hence,
Area of `Delta = (1)/(2) ab`
Also, `Delta^(2) = s (s -a) (s - b) (s -c) = (1)/(4) a^(2) b^(2)`
or `4s (s -a) (s -b) (s-c) = a^(2) b^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.6|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.4|5 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC,c^(2)=a^(2)+b^(2), then 4s (s -a) (s -b) (s -c) =

If 2x=a+b+c , then prove that, (s-a)^(2)+(s-b)^(2) +(s-c)^(2) +s^(2)=a^(2)+b^(2)+c^(2) .

If 2s = a + b + c , then the value of (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 - a^2 - b^2 - c^2 will be :

If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

If a,b,c are the sides of a triangle and s=(a+b+c)/(2), then prove that 8(s-a)(s-b)(s-c)<=abc

If c^(2)=a^(2)+b^(2),2s=a+b+c, then 4s(s-a)(s-b)(s-c)

If a+b+c=2s, " then " [(s - a)^2 + (s -b)^2 + (s - c)^2 + s^2] =?