Home
Class 12
MATHS
Line joining vertex A of triangle ABC an...

Line joining vertex A of triangle ABC and orthocenter (H) meets the side BC in D. Then prove that
(a) `BD : DC = tan C : tan B`
(b) `AH : HD = (tan B + tan C) : tan A`

Text Solution

Verified by Experts


In figure in `DeltaADB, BD = c cos B` (projection of AB on BC)
In `DeltaADC, CD = b cos C` (projection of AC on BC)
`:. (BD)/(CD) = (c cosB)/(b cos C) = (2 R sin C cos B)/(2R sin B cos C) = (tan C)/(tan B)`
Also, `(AH)/(HD) = (2R cos A)/(2R cos B cos C)`
`= (sin A)/(tan A cos B cos C)`
`= (sin (B + C))/(tan A cos B cos C)`
`= (sin B cos C + sin C cos B)/(tan A cos B cos C)`
`= (tan B + tan C)/(tan A)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.10|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.11|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.8|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

If A+B+C= pi , prove that tan A+tan B+tan C= tanA tan B tan C

in triangle ABC,tan A+tan B+tan C=

Knowledge Check

  • In triangle ABC, line joining the circumcenter and orthocenter is parallel to side AC, then the value of tan A tan C is equal to

    A
    `sqrt3`
    B
    3
    C
    `3sqrt3`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    (a) tan A+tan B+tan C=tan A tan B tan C

    (tan A+tan B-tan C+tan A tan B tan C)/(1-tan A tan B+tan B tan C+tan C tan A)

    If A + B + C = 180^(@) , then prove that tan A + tan B + tan C = tan A tan B tan C.

    If A+B+C= pi/2 , prove that tan A tan B+tan B tan C+tan C tan A=1

    If in a triangle ABC , the angle C is obtuse then tan A *tan B is

    For any three angles A,B,C tan ( B -C ) + tan ( C -A) + tan ( A -B ) = tan ( B -C ) tan (C-A) tan ( A-B)

    Prove that tan(A+B+C)=(tan A+tan B+tan C-tan A tan B tan C)/(1-tan A tan B-tan B tan C-tan C tan A)