Home
Class 12
MATHS
Let A1,A2,....An be the vertices of an ...

Let `A_1,A_2,....A_n` be the vertices of an n-sided regular polygon such that ,`1/(A_1A_2)=1/(A_1A_3)+1/(A_1A_4)`. Find the value of n.

Text Solution

Verified by Experts

The correct Answer is:
`n = 7`

Let a be the side of n sided regular polgon `A_(1) A_(2) A_(3) A_(4)..A_(n)`

`:.` Angle subtended by each side at centre `= (2pi)/(n)`
Also `OA_(1) = OA_(2) = OA_(3) = .... = OA_(n) = r` (say)
In `DeltaA_(1) OA_(2)`, using cosine rule
`A_(1) A_(2)^(2) = r^(2) + r^(2) -2r^(2) cos.(2pi)/(n)`
`=2r^(2) (1- cos.(2pi)/(n))`
`=4r^(2) sin.(pi)/(n)`
`:. A_(1) A_(2) = 2r sin.(pi)/(n)`
Similarly in `DeltaA_(1) OA_(3), A_(1) A_(3) = 2r sin.(2pi)/(n)`
and in `DeltaA_(1) OA_(4), A_(1) A_(4) = 2r sin.(3pi)/(n)`
But given that `(1)/(A_(1)A_(2)) = (1)/(A_(1)A_(3)) + (1)/(A_(1)A_(4))`
`rArr (1)/(2sin.(pi)/(n)) = (1)/(2sin.(2pi)/(n)) + (1)/(2sin.(3pi)/(n))`
`rArr 2sin.(2pi)/(n) sin.(3pi)/(n) = 2 sin.(pi)/(n) sin.(3pi)/(n) + 2 sin.(pi)/(n) sin.(pi)/(n)`
`rArr cos.(pi)/(n) - cos.(5pi)/(n) = cos.(2pi)/(n) + cos.(4pi)/(n) - cos.(pi)/(n) - cos.(3pi)/(n)`
`rArr cos.(5pi)/(n) + cos.(2pi)/(n) = cos.(4pi)/(n) + cos.(3pi)/(n)`
`rArr 2 cos.(7pi)/(n) cos.(3pi)/(2n) = 2 cos.(7pi)/(2n) cos.(pi)/(2n)`
`rArr cos.(7pi)/(2n) (cos.(3pi)/(2n) - cop.(pi)/(2n)) = 0`
`rArr 2 cos.(7pi)/(2n) sin.(pi)/(n) sin.(pi)/(2n) = 0`
`rArr (7pi)/(2n) = (2k + 1) (pi)/(2) " or " (pi)/(2) " or " (pi)/(n) = kpi " or " (pi)/(2n) = k pi, k in Z`
`rArr n = (7)/(2k + 1) " or " n = (1)/(k)` (not possible)
or `n = (1)/(2k)` (not possible)
`:. n = 7 " for " k = 0`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.10|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|32 Videos

Similar Questions

Explore conceptually related problems

Let A_(1),A_(2),...A_(n) be the vertices of an n-sided regular polygon such that,(1)/(A_(1)A_(2))=(1)/(A_(1)A_(3))+(1)/(A_(1)A_(4)). Find the value of n.

Let A_(1), A_(2), A_(3),…,A_(n) be the vertices of an n-sided regular polygon such that (1)/(A_(1)A_(2))=(1)/(A_(1)A_(3))+(1)/(A_(1)A_(4)). Find the value of n. Prove or disprove the converse of this result.

If A_1A_2....A_n is a regular polygon. Then the vector vec(A_1A_2)+vec(A_2A_3)+.....vec(A_nA_1) is

let A_(1),A_(2),A_(3),...A_(n) are the vertices of a regular n sided polygon inscribed in a circle of radius R.If (A_(1)A_(2))^(2)+(A_(1)A_(3))^(2)+...(A_(1)A_(n))^(2)=14R^(2) then find the number of sides in the polygon.

If A_1A_2..........A_n is a regular polygon. Then the vectors overline(A_1A_2) + overline(A_2A_3)+.......+overline(A_nA_1) is equal to (A) 0 (B) n(vec(A_1A_2)) (C) n(vec(OA_1))(O is centre) (D) (n-1)(vec(A_1A_2))

If a_1, a_2, a_3, .... a_4001 are terms of an A.P. such that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+......1/(a_4000a_4001)=10 and a_2+a_4000=50, then |a_1-a_4001| is equal to

Let a_1,a_2,a_3,.... are in GP. If a_n>a_m when n>m and a_1+a_n=66 while a_2*a_(n-1)=128 and sum_(i=1)^n a_i=126 , find the value of n .

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.