Home
Class 12
MATHS
Show that 2(sin^6x+cos^6x)-3(sin^4x+cos^...

Show that `2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0`.

Text Solution

Verified by Experts

`2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1`
`=2[(sin^2x)^3+(cos^2x)^(3)]-3(sin^4x+cos^4x)+1`
`=2[(sin^2x+cos^2x)^3-3sin^2xcos^2x(sin^2x+cos^2x)]-3[(sin^2x+cos^2x)^2-2sin^2xcos^2x]+1`
`=2[1-3sin^2xcos^2x]-3[1-2sin^2xcos^2x]+1=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.1|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.2|8 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Show that 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

Show that: 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

Knowledge Check

  • int (sin^6x+cos^6x+3 sin^2x cos^2 x)dx is equal to

    A
    x+c
    B
    `3/2 "sin"2x+C`
    C
    `-3/2 "cos2x+C`
    D
    `1/3"sin"3x-cos 3x+C`
  • Similar Questions

    Explore conceptually related problems

    Show That 2(sin^(6)x+cos^(6)x)-3(sin^(4)x+cos^(4)x)+1=0

    Find the value of: 2("sin"^(6)x+cos^(6)x)-3("sin"^(4)x+cos^(4)x)+2 .

    Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

    Show that: 3(sin x-cos x)^(4)+6(sin x+cos x)^(2)+4(sin^(6)x+cos^(6)x)=13

    Prove that: 3(sin x-cos x)^(4)+4(sin^(6)x+cos^(6)x)+6(sin x+cos x)^(2)=13

    Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

    Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x