Home
Class 12
MATHS
If cos^2alpha-sin^2alpha=tan^2beta," the...

If `cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta`.

Text Solution

AI Generated Solution

To prove that if \( \cos^2 \alpha - \sin^2 \alpha = \tan^2 \beta \), then \( \tan^2 \alpha = \cos^2 \beta - \sin^2 \beta \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ \cos^2 \alpha - \sin^2 \alpha = \tan^2 \beta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.2|8 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.3|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If cos^(2)alpha-sin^(2)alpha=tan^(2)alpha, then show that tan^(2)alpha=cos^(2)beta-sin^(2)beta

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If 3tan alpha=4tan beta ,then prove that tan(alpha-beta)=(sin beta*cos beta)/(3+sin^(2)beta)=(tan beta)/(4tan^(2)beta+3)

if 3tan alpha=4tan beta then prove that tan(alpha-beta)=(tan beta)/(4tan^(2)beta+3)=(sin beta*cos beta)/(3+sin^(2)beta)

(cos^2alpha-cos^2beta)/(cos^2alpha cos^2beta)=tan^2beta-tan^2alpha