Home
Class 12
MATHS
If 15sin^4alpha+10cos^4alpha=6 then fin...

If `15sin^4alpha+10cos^4alpha=6` then find the value of `8cosec^6alpha+27sec^6alpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ 15\sin^4\alpha + 10\cos^4\alpha = 6 \] ### Step 1: Rewrite the equation in terms of \(\sin^2\alpha\) and \(\cos^2\alpha\) Let \( x = \sin^2\alpha \) and \( y = \cos^2\alpha \). We know that \( x + y = 1 \). Therefore, we can express \(\cos^4\alpha\) as: \[ \cos^4\alpha = (1 - \sin^2\alpha)^2 = (1 - x)^2 = 1 - 2x + x^2 \] Substituting this into the original equation gives: \[ 15x^2 + 10(1 - 2x + x^2) = 6 \] ### Step 2: Simplify the equation Expanding the equation: \[ 15x^2 + 10 - 20x + 10x^2 = 6 \] Combine like terms: \[ (15x^2 + 10x^2) - 20x + 10 = 6 \] This simplifies to: \[ 25x^2 - 20x + 10 = 6 \] ### Step 3: Rearranging the equation Now, we can rearrange the equation: \[ 25x^2 - 20x + 4 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 25 \), \( b = -20 \), and \( c = 4 \). Calculating the discriminant: \[ b^2 - 4ac = (-20)^2 - 4 \cdot 25 \cdot 4 = 400 - 400 = 0 \] Since the discriminant is zero, there is one real solution: \[ x = \frac{-(-20) \pm \sqrt{0}}{2 \cdot 25} = \frac{20}{50} = \frac{2}{5} \] Thus, \[ \sin^2\alpha = \frac{2}{5} \] And since \( \cos^2\alpha = 1 - \sin^2\alpha \): \[ \cos^2\alpha = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 5: Find \( \csc^2\alpha \) and \( \sec^2\alpha \) Now, we can find: \[ \csc^2\alpha = \frac{1}{\sin^2\alpha} = \frac{1}{\frac{2}{5}} = \frac{5}{2} \] \[ \sec^2\alpha = \frac{1}{\cos^2\alpha} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] ### Step 6: Calculate \( 8\csc^6\alpha + 27\sec^6\alpha \) Now we calculate: \[ \csc^6\alpha = \left(\frac{5}{2}\right)^6 = \frac{15625}{64} \] \[ \sec^6\alpha = \left(\frac{5}{3}\right)^6 = \frac{15625}{729} \] Now substituting back into the expression: \[ 8\csc^6\alpha = 8 \cdot \frac{15625}{64} = \frac{125000}{64} \] \[ 27\sec^6\alpha = 27 \cdot \frac{15625}{729} = \frac{421875}{729} \] ### Step 7: Find a common denominator and add The common denominator of \( 64 \) and \( 729 \) is \( 46656 \): Convert \( \frac{125000}{64} \) to have a denominator of \( 46656 \): \[ \frac{125000 \cdot 729}{46656} = \frac{91250000}{46656} \] Convert \( \frac{421875}{729} \) to have a denominator of \( 46656 \): \[ \frac{421875 \cdot 64}{46656} = \frac{26925000}{46656} \] Now add them: \[ \frac{91250000 + 26925000}{46656} = \frac{118375000}{46656} \] Thus, the final answer is: \[ 8\csc^6\alpha + 27\sec^6\alpha = \frac{118375000}{46656} \]

To solve the problem, we start with the equation given: \[ 15\sin^4\alpha + 10\cos^4\alpha = 6 \] ### Step 1: Rewrite the equation in terms of \(\sin^2\alpha\) and \(\cos^2\alpha\) Let \( x = \sin^2\alpha \) and \( y = \cos^2\alpha \). We know that \( x + y = 1 \). Therefore, we can express \(\cos^4\alpha\) as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.3|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.1|8 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If 15 sin^(4)alpha+10cos^(4)alpha=6 , then the value of 8 cosec^(6)alpha+27 sec^(6)alpha is

If 10sin^(4)alpha+15cos^(4)alpha=6, then find the value of 27cos ec^(6)alpha+8sec^(6)alpha.

If 10sin^(4)alpha+15cos^(4)alpha=6, find the value of 27cos ec^(6)alpha+8sec^(6)alpha

If 10sin^(4)alpha+15cos^(4)alpha=6 then the value of 9cos ec^(4)alpha+8sec^(4)alpha-75 is

If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha+8 sec^(4) alpha is S, then find the value of (S)/(25) .

If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6 , then find the value of 27 sin^(8)alpha + 8 cos^(8) alpha

If sec^(2)alpha+cos^(2)alpha=2 , then find the value of sec alpha+ cos alpha .

If 15sin^4alpha+10cos^4alpha=6 , then 27sec^6alpha+8cosec^6 alpha =

If cos^(2)alpha+ cos alpha=1 , then find the value of 4 sin^(2)alpha+4 sin^(4) alpha+2 .