Home
Class 12
MATHS
Find the range of f(x)=sin(cosx)....

Find the range of `f(x)=sin(cosx).`

Text Solution

Verified by Experts

The correct Answer is:
`[-sin1, sin 1]`

`f(x)=sin(cosx)`
For `AA x in R, theta=cosx in [-1,1]`
Since `sintheta`is increasing from `-pi//2" to"pi//2`, the maximum value occurs at `thet=1` and the minimum value occurs at ` theta=-1`. Hence, rangs is `[-sin1, sin1]`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=|sinx|+|cosx|, x in R .

Find the range of f(x)=sqrt(sin(cos x))+sqrt(cos(sin x))

Find the range of f(x)=1/(4cosx-3) .

Find the range of f(x)=|sin x|+|cos x|,x in R

Find the range of f(x)=|sin x|+|cos x|

Find the range of f(x)=3|sin(x)|-4|cos(x)|

Find the range of f(x)=abs(sinx)+abs(cosx)0lexlepi

Find the range of f(x)=(1)/(|sinx|)+(1)/(|cosx|)

Find the range of f(x)=sin^(2)x-sin x+1

Find the range of f(x)=sin^(2)x-3sin x+2