Home
Class 12
MATHS
Find the range of 12sintheta-9sin^2theta...

Find the range of `12sintheta-9sin^2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the expression \( 12\sin\theta - 9\sin^2\theta \), we can follow these steps: ### Step 1: Rewrite the expression Let \( y = 12\sin\theta - 9\sin^2\theta \). We can rearrange this into a standard quadratic form in terms of \( \sin\theta \): \[ y = -9\sin^2\theta + 12\sin\theta \] ### Step 2: Identify the quadratic coefficients This is a quadratic equation in the form \( ay^2 + by + c \), where: - \( a = -9 \) - \( b = 12 \) - \( c = 0 \) ### Step 3: Find the vertex of the quadratic The maximum or minimum value of a quadratic equation \( ax^2 + bx + c \) occurs at \( x = -\frac{b}{2a} \). Here, we need to find \( \sin\theta \): \[ \sin\theta = -\frac{12}{2 \times -9} = \frac{12}{18} = \frac{2}{3} \] ### Step 4: Calculate the maximum value Substituting \( \sin\theta = \frac{2}{3} \) back into the expression to find the maximum value: \[ y = 12\left(\frac{2}{3}\right) - 9\left(\frac{2}{3}\right)^2 \] Calculating each term: \[ y = 12 \times \frac{2}{3} - 9 \times \frac{4}{9} \] \[ y = 8 - 4 = 4 \] ### Step 5: Find the minimum value To find the minimum value, we need to consider the extreme values of \( \sin\theta \), which are \( -1 \) and \( 1 \). 1. For \( \sin\theta = -1 \): \[ y = 12(-1) - 9(-1)^2 = -12 - 9 = -21 \] 2. For \( \sin\theta = 1 \): \[ y = 12(1) - 9(1)^2 = 12 - 9 = 3 \] ### Step 6: Determine the range From the calculations: - Maximum value = \( 4 \) - Minimum value = \( -21 \) Thus, the range of the expression \( 12\sin\theta - 9\sin^2\theta \) is: \[ [-21, 4] \]

To find the range of the expression \( 12\sin\theta - 9\sin^2\theta \), we can follow these steps: ### Step 1: Rewrite the expression Let \( y = 12\sin\theta - 9\sin^2\theta \). We can rearrange this into a standard quadratic form in terms of \( \sin\theta \): \[ y = -9\sin^2\theta + 12\sin\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Write the maximum value of 12s int h eta-9sin^(2)theta

The maximum value of 12sin theta-9sin^(2)theta is

If cos ec theta=(13)/(12), find the value of (2sin theta-3cos theta)/(4sin theta-9cos theta)

If theta is an acute angle and sintheta=costheta , then find the value of 2tan^(2)theta+sin^(2)theta-1 .

If (sintheta+costheta)/(sintheta-costheta)=3 , then find the value of sin^(4)theta-cos^(4)theta .

If sintheta=(12)/(13) , find the value of (sin^(2)theta-cos^(2)theta)/(2sinthetacostheta)-(1)/(tan^(2)theta) .

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .

The maximum value of 12 sin theta -9 sin ^(2) theta is