Home
Class 12
MATHS
Find the minimum value of 9tan^2theta+4c...

Find the minimum value of `9tan^2theta+4cot^2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( 9\tan^2\theta + 4\cot^2\theta \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = 9\tan^2\theta + 4\cot^2\theta \] ### Step 2: Substitute \( \cot^2\theta \) Using the identity \( \cot\theta = \frac{1}{\tan\theta} \), we can express \( \cot^2\theta \) in terms of \( \tan^2\theta \): \[ \cot^2\theta = \frac{1}{\tan^2\theta} \] Thus, we can rewrite \( y \) as: \[ y = 9\tan^2\theta + 4\left(\frac{1}{\tan^2\theta}\right) \] ### Step 3: Let \( x = \tan^2\theta \) Let \( x = \tan^2\theta \). Then, we can rewrite the expression as: \[ y = 9x + \frac{4}{x} \] ### Step 4: Find the derivative To find the minimum value, we need to take the derivative of \( y \) with respect to \( x \) and set it to zero: \[ \frac{dy}{dx} = 9 - \frac{4}{x^2} \] Setting the derivative equal to zero: \[ 9 - \frac{4}{x^2} = 0 \] ### Step 5: Solve for \( x \) Rearranging gives: \[ \frac{4}{x^2} = 9 \] \[ 4 = 9x^2 \] \[ x^2 = \frac{4}{9} \] \[ x = \frac{2}{3} \quad (\text{since } x = \tan^2\theta \text{ must be positive}) \] ### Step 6: Substitute back to find \( y \) Now substitute \( x = \frac{2}{3} \) back into the expression for \( y \): \[ y = 9\left(\frac{2}{3}\right) + \frac{4}{\frac{2}{3}} = 6 + 6 = 12 \] ### Step 7: Verify it's a minimum To confirm that this is a minimum, we can check the second derivative: \[ \frac{d^2y}{dx^2} = \frac{8}{x^3} \] Since \( x > 0 \), \( \frac{d^2y}{dx^2} > 0 \), indicating that \( y \) has a minimum at this point. ### Conclusion Thus, the minimum value of \( 9\tan^2\theta + 4\cot^2\theta \) is: \[ \boxed{12} \]

To find the minimum value of the expression \( 9\tan^2\theta + 4\cot^2\theta \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = 9\tan^2\theta + 4\cot^2\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of 9tan^(2)theta + 4cot^(2)theta .

Find the minimum value of sin^(2)theta+cos^(2)theta+sec^(2)theta+cos ec^(2)theta+tan^(2)theta+cot^(2)theta

The minimum value of 9tan^(2)theta+4cot^(2)theta is 6124 none of these

Prove that minimum value of atan^(2)theta+bcot^(2)theta is 2sqrt(ab) where a and b are positive quantities . Find the minimum value of 16 tan^(2) theta+9 cot^(2)theta

What is the minimum value of 9 tan ^(2) theta + 4 cot ^(2) theta ?

The value of tan^(2)theta+cot^(2)theta is

Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(2)theta+tan^(2)theta+cot^(2)theta=?