Home
Class 12
MATHS
If sin^2theta1+sin^2theta2+...+sin^2thet...

If `sin^2theta_1+sin^2theta_2+...+sin^2theta_n=0`, then find the minimum value of `costheta_1+costheta_2+...+costheta_n`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and find the minimum value of the sum of cosines. ### Step 1: Analyze the given condition We are given that: \[ \sin^2 \theta_1 + \sin^2 \theta_2 + \ldots + \sin^2 \theta_n = 0 \] Since \(\sin^2 \theta_i \geq 0\) for all \(i\), the only way for this sum to equal zero is if each individual term is zero. Therefore, we have: \[ \sin^2 \theta_i = 0 \quad \text{for all } i \] This implies: \[ \sin \theta_i = 0 \quad \text{for all } i \] Thus, \(\theta_i\) must be an integer multiple of \(\pi\): \[ \theta_i = k_i \pi \quad \text{for some integer } k_i \] ### Step 2: Find the values of \(\cos \theta_i\) Using the fact that \(\theta_i = k_i \pi\), we can find the cosine values: \[ \cos \theta_i = \cos(k_i \pi) \] The cosine of integer multiples of \(\pi\) is: \[ \cos(k_i \pi) = (-1)^{k_i} \] This means that \(\cos \theta_i\) can either be \(1\) or \(-1\) depending on whether \(k_i\) is even or odd. ### Step 3: Calculate the sum of cosines We need to find the minimum value of: \[ \cos \theta_1 + \cos \theta_2 + \ldots + \cos \theta_n \] Given that each \(\cos \theta_i\) can be either \(1\) or \(-1\), the minimum value occurs when all \(\cos \theta_i\) are \(-1\): \[ \cos \theta_1 = \cos \theta_2 = \ldots = \cos \theta_n = -1 \] Thus, the sum becomes: \[ \cos \theta_1 + \cos \theta_2 + \ldots + \cos \theta_n = -1 - 1 - \ldots - 1 \quad (n \text{ times}) = -n \] ### Conclusion The minimum value of \( \cos \theta_1 + \cos \theta_2 + \ldots + \cos \theta_n \) is: \[ \boxed{-n} \]

To solve the problem, we need to analyze the given condition and find the minimum value of the sum of cosines. ### Step 1: Analyze the given condition We are given that: \[ \sin^2 \theta_1 + \sin^2 \theta_2 + \ldots + \sin^2 \theta_n = 0 \] Since \(\sin^2 \theta_i \geq 0\) for all \(i\), the only way for this sum to equal zero is if each individual term is zero. Therefore, we have: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sin theta+costheta=1, then the minimum value of (1+cosectheta)(1+sectheta) is

If sin theta - cos theta =1/29 find the value of sintheta + costheta .

if theta_1, theta_2, theta_3, ........, theta_n are in AP then (sintheta_1 + sintheta_2 + ....... + sintheta_n) / (costheta_1 + costheta_2 + costheta_3 + ...... + costheta_n ) =?

If sin theta_1 + sin theta_2 + sintheta_3 =3 then cos theta_1 + cos theta_2 + costheta_3 is equal to

If costheta=3/5 , find the value of sin2theta :

If costheta+cos^(2)theta=1 , then find the value of sin^(4)theta+sin^(2)theta .

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

Find max^(m)&min^(m) value of sin^(2)theta+costheta

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .

If 2sin^(2)theta=3costheta , where 0lethetale2pi , then find the value of theta .