Home
Class 12
MATHS
Find the minimum value of the function ...

Find the minimum value of the function
`f(x)=(1+sinx)(1+cosx),AAx inR`.

Text Solution

Verified by Experts

The correct Answer is:
0

Since `0le1+sinxle2" and "0le+cosxle2`,
minium value of f(x) is 0, when any one of `(1+sinx)" or "(1+cosx)` is zero.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Minimum value of the function f(x)= (1/x)^(1//x) is:

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

The maximum value of function f(x)=sinx(1+cosx),xiniR is

Find the minimum value of the function f(x)=(pi^(2))/(pi cot^(-1)(-x))-cot^(-1)x

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

The period of the function f(x)=|sinx|-|cosx| , is

Without using derivative, find the maximum value and the minimum value, if any, of the function f defined by f(x)=x^3, x in [-1,1]

The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x)+tanx/sqrt(1-sec^2x-1)+cotx/sqrt(1-cosec^2x-1) whenever it is defined is