Home
Class 12
MATHS
If any quadrilateral ABCD, prove that "...

If any quadrilateral ABCD, prove that `"sin"(A+B)+sin(C+D)=0` `"cos"(A+B)=cos(C+D)`

Text Solution

Verified by Experts

In quadrilateral `ABCD, A+B+C+D=2pi`.
(a) `sin(A+B)+sin(C+D)=sin(A+B)+sin(2pi-(A+B))`
`=sin(A+B)-sin(A+B)=0`
(b) `cos(A+B)=cos(C+D)`
`=cos(2pi-(C+D))=cos(C+D)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.5|16 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If any quadrilateral ABCD,prove that sin(A+B)+sin(C+D)=0cos(A+B)=cos(C+D)

In equilibrium ABCD, prove thatL: i) sin(A+B)+sin(C+D)=0 ii) cos(A+D)-cos(B+C)=0

In a quadrilateral ABCD,cos A cos B+sin C sin D=

In a Quadrilateral ABCD,cos A*cos B+sin C sin D=

In any Delta ABC, prove that: (sin B)/(sin C)=(c-a cos B)/(b-a cos C)

In any Delta ABC ,prove that (sin B)/(sin C)=(c-a cos B)/(b-a cos C)

Prove that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)

In any quadrilateral ABCD, show that: cosA cosB-cosC cosD="sin"A "sin"B-"sin"C "sin"D.

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

If A,B,C,D be the angles of a quadrilateral , what is the value of (sin(A+B))/(sin (C+D)) +(cos(C+D))/(cos (A+B))