Home
Class 12
MATHS
Let us consider the equation cos^4x/a+si...

Let us consider the equation `cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0`
The value of `sin^2x` in terms of a and b is

A

`sqrt(ab)`

B

`b/(a+b)`

C

`(b^2-a^2)/(a^2+b^2)`

D

`(a^2+b^2)/(b^2-a^2)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have, `cos^4x/a+sin^4x/b=1/(a+b)=(cos^2x+sin^2x)/(a+b)`
`rArr cos^2x(cos^2x/a-1/(a+b))=sin^2x(1/(a+b)-sin^2x/b)`
`rArrcos^2x((bcos^2x-asin^2x)/(a(a+b)))=sin^2x((bcos^2x-asin^2x)/(b(a+b)))`
`rArrcos^2x/a=sin^2x/b`
`rArr(1-sin^2x)/a=sin^2x/b`
`rArr sin^2x=b/(a+b)and cos^2x=a/(a+b)`
`:. sin^8x/b^3+cos^8x/a^3=b^3/(b^3(a+b)^4)+a^4/(a^3(a+b)^4)=1/((a+b)^3)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Let us consider the equation cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0 the value of sin^8x/b^3+cos^8x/a^3 is

Consider the equation,sin^(4)x-cos^(2)x sin x+2sin a^(2)x+sin x=0in0<=x<=3 pi

If sin x + sin y = a , cos x - cos y = b then the value of tan ((y-x)/2) is _______ in terms of a and b.

Solve the equation 4sin x cos x+2sin x+2cos x+1=0

If x_(1) and x_(2) are the two solutions of the equation 2cos x sin3x=sin4x+1 lying in the interval [0,2 pi]. then the value of |x_(1)-x_(2)| is

The total number of solution of sin^(4)x+cos^(4) x= sin x cos x in [0, 2pi]

If both the distinct roots of the equation |sin x|^(2)+|sin x|+b=0 in [0,pi] are real, then the values of b are [-2,0](b)(-2,0)[-2,0] (d) none of these

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

The number of solutions of sin^(4)x+cos^(4)x=sin x cos x in [0,2 pi] is/are

Let the solution set of the inequation n(sin x-(1)/(2))(sin x-(1)/(sqrt(2)))<=0in[(pi)/(2),pi] be A and let solution set of equation sin^(-1)(3x-4x^(3))=3sin^(-1)x be B. Now define a function f:A rarr B.