Home
Class 12
MATHS
Let f(x) = sin^6x + cos^6x + k(sin^4 x ...

Let `f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x)` for some real number k. Determine(a) all real numbers k for which `f(x)` is constant for all values of x.

A

`-1//2`

B

`1//2`

C

`1//4`

D

`-3//2`

Text Solution

Verified by Experts

The correct Answer is:
D

f(x)`=sin^(6)x+cos^(6)x+k (sin^4x+cos(4)x)`
f(x)` =sin^6x+cos^6x+k(sin^4x+cos^4 x)`
`=(sin ^2x)^3+cos^2 x)^3+k (sin^2 x)+(cos^2 )^2]`
`=(sin ^2x)^3+(cos ^2 x)^3-3 sin^2x.cos^2x(sin^2 x+ cos^2)`
`+ k[ sin^x +cos^2 x)^2-2sin^2 x. cos^2x]`
`=(1-3 sin^2 x cos^2x)+ k[1-2 sin^2 x cos^2 x]`
f(x) is constant if k = -3/2.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(6)x+cos^(6)x+k(sin^(4)x+cos^(4)x) for some real number k .Determine(a) all real numbers k for which f(x) is constant for all values of x .

The set of value(s) of k for which f(x)=sin x-cos x-kx is decreasing for all values of x ,is

If A= sin^(2) x + cos^(4) x then for all real x

If A = sin^(2)x + cos^(4)x , where x in a real number

The equation sin x(sin x+cos x)=k has real solutions,where k is a real number.Then

The set of values of k for which x^(2)-kx+sin^(-1)(sin4)>0 for all real x is

For every real number find all the real solutions to equation sin x + cos(a+x)+ cos (a-x)=2