Home
Class 12
MATHS
If sin^4x/2+cos^4x/3=1/5then...

If `sin^4x/2+cos^4x/3=1/5`then

A

`tan^2x=2/3`

B

`sin^8x/8+cos^8x/27=1/125`

C

`tan^2x=1/3`

D

`sin^8/8+cos^8x/27=2/125`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \), we will follow these steps: ### Step 1: Rewrite \( \cos^4 x \) Using the Pythagorean identity \( \cos^2 x = 1 - \sin^2 x \), we can express \( \cos^4 x \) as: \[ \cos^4 x = (1 - \sin^2 x)^2 \] ### Step 2: Substitute in the equation Substituting \( \cos^4 x \) into the original equation gives: \[ \frac{\sin^4 x}{2} + \frac{(1 - \sin^2 x)^2}{3} = \frac{1}{5} \] ### Step 3: Clear the fractions To eliminate the denominators, we can multiply the entire equation by 30 (the least common multiple of 2, 3, and 5): \[ 30 \left( \frac{\sin^4 x}{2} \right) + 30 \left( \frac{(1 - \sin^2 x)^2}{3} \right) = 30 \left( \frac{1}{5} \right) \] This simplifies to: \[ 15 \sin^4 x + 10 (1 - \sin^2 x)^2 = 6 \] ### Step 4: Expand the equation Now, expand \( (1 - \sin^2 x)^2 \): \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x \] Substituting this back into the equation gives: \[ 15 \sin^4 x + 10(1 - 2\sin^2 x + \sin^4 x) = 6 \] This simplifies to: \[ 15 \sin^4 x + 10 - 20 \sin^2 x + 10 \sin^4 x = 6 \] ### Step 5: Combine like terms Combine the terms involving \( \sin^4 x \): \[ (15 \sin^4 x + 10 \sin^4 x) - 20 \sin^2 x + 10 = 6 \] This simplifies to: \[ 25 \sin^4 x - 20 \sin^2 x + 10 - 6 = 0 \] Thus, we have: \[ 25 \sin^4 x - 20 \sin^2 x + 4 = 0 \] ### Step 6: Substitute \( t = \sin^2 x \) Let \( t = \sin^2 x \). Then \( \sin^4 x = t^2 \), and we can rewrite the equation as: \[ 25 t^2 - 20 t + 4 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 25 \cdot 4}}{2 \cdot 25} \] Calculating the discriminant: \[ t = \frac{20 \pm \sqrt{400 - 400}}{50} = \frac{20 \pm 0}{50} = \frac{20}{50} = \frac{2}{5} \] ### Step 8: Find \( \sin^2 x \) Since \( t = \sin^2 x \), we have: \[ \sin^2 x = \frac{2}{5} \] ### Step 9: Find \( \cos^2 x \) Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \cos^2 x = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 10: Find \( \tan^2 x \) Now, we can find \( \tan^2 x \): \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} = \frac{\frac{2}{5}}{\frac{3}{5}} = \frac{2}{3} \] ### Conclusion The value of \( \tan^2 x \) is \( \frac{2}{3} \).

To solve the equation \( \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \), we will follow these steps: ### Step 1: Rewrite \( \cos^4 x \) Using the Pythagorean identity \( \cos^2 x = 1 - \sin^2 x \), we can express \( \cos^4 x \) as: \[ \cos^4 x = (1 - \sin^2 x)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Main Previous Year|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If (sin^(4)x)/(2)+(cos^(4)x)/(3)=(1)/(5), then

If (sin^(4)x)/(2)+(cos^(4)x)/(3)=(1)/(5) then

If (sin^(4)x)/(2)+(cos^(4)x)/(3)=(1)/(5) then

If (sin^(4)x)/(2)+(cos^(4)x)/(3)=(1)/(5) then tan^(2)x=(2)/(3)(b)(sin^(8)x)/(8)+(cos^(8)x)/(27)=(1)/(125)tan^(2)x=(1)/(3)(d)(sin^(8)x)/(8)+(cos^(8)x)/(27)=(2)/(125)

If 3 sin x+ 4 cos x =5 then 4 sin x -3 cos x is equal to

If 3sin x+4 cos x=2, then the value of 3 cos x -4 sin x is equal to:

if 3sin x+4cos x=5, then 4sin x-3cos x