Home
Class 11
MATHS
ABCD is a parallelogram in which vec (AB...

ABCD is a parallelogram in which `vec (AB) = 3hat i-6hat j + 3hat k and vec(AD) = 6hat i + 6hat j + 3hat k`. P is a point of AB such that `AP: PB = 1 : 2 and Q` is a point on BC such that `BQ : QC=2 : 1` . Find angle between `DQ and PC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a = 6hat i - hat j+ 2hat k and vec b =hat i- 3hat j - 2 hat k , find vec a - vec b .

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

Find the angle between the vectors 5hat i+3hat j+4hat k and vec a=6hat i-8hat j-hat k

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(F) = 3hat(i) + 4hat(j) + 5hat(k) and vec(S) = 6hat(i) + 2hat(j) + 5hat(k) , find the work done by the force.