Home
Class 11
MATHS
Find the values of x in the interval [0,...

Find the values of x in the interval `[0,2pi]` which satisfy the inequality:
`3|2sinx-1|ge3+4cos^(2)x`

Text Solution

Verified by Experts

The given inequality can be written as:
`3|2sinx-1| ge3 +4(1-sin^(2)x) rArr 3|2sinx-1| ge7-4sin^(2)x`
Let `sinx=t rArr |3/2t -1|ge7-4t^(2)`
Case I: For `2t-1 ge0` i.e., `t ge 1//2` we have,` |2t-1|=(2t-1)`
`rArr 3(2t-1) ge 7-4t^(2) rArr 6t-3 ge 7-4t^(2)`
`rArr 4t^(2)+6y-10 ge0 rArr 2t^(2)+3t-5 ge0`
`rArr (t-1)(2t+5) ge0 rArr t le -5/2` and `t ge1`
Now for `t ge1/2`, we get `t ge1` from above conditions i.e., `sinx ge1`
The inequality holds true for x satisfying the equation `sinx=1 therefore x=pi/2`
(for `x in [0, 2pi])`
Case II: For `2t-t lt 0 rArr t lt 1/2`
We have, `|2t-1 lt 0| rArr t lt 1/2`
We have, `|2t-1|=-(2t-1)`
`rArr -3(2t-1) ge 7-4t^(2) rArr -6t+3 ge7-4t^(2)`
`rArr 4t^(2)-6t-4ge0 rArr 2t^(2)-3t-2 ge0`
`rArr (t-2)(2t+1) ge0 rArr t le -1/2` and `t ge2`
Again for `t lt 1/2`, we get `t le -1/2` from above conditions
i.e., `sinx le 1/2 rArr (7pi)/6 le x le 11/6 pi` (for `x in [0,2pi])`
Thus, `x in [(7pi)/6, (11pi)/6] cup {pi/2}` Ans.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF|20 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos

Similar Questions

Explore conceptually related problems

Find the values of x in the interval [0,\ 2pi] which satisfy the inequality : 3\ |sinx-1|>=3+4cos^2x .

The number of integral values of X in the interval [0,pi] satisfying the inequality 2sin^(2)2x-3sin2x+1<0

Knowledge Check

  • The number of values of x in the interval [0,5pi] satisfying the equation 3sin^2x-7sinx+2=0 is

    A
    0
    B
    5
    C
    6
    D
    10
  • The number of values of x in the interval [0, 3pi] satisfying the equation 3sin^(2)x-7sinx+2=0 is

    A
    0
    B
    5
    C
    4
    D
    10
  • The number of values of x in the interval [0, 3pi] satisfying the equatioin 2sin^(2)x+5sinx-3=0 is

    A
    2
    B
    4
    C
    6
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Find the values of x in the interval [0,2pi] for which 4sin^(2)x - 8 sinx+3 le0

    The number of values of x in the interval [0,3 pi] satisfying the equation cos^(2)x+2cos x-2=0 is

    The number of values of x in the interval [0,3 pi] satisfying the equation 2sin^(2)x+5sin x-3=0 is

    The number of values of x in the interval [0,(7pi)/2] satisfying the equation 6sin^2x+sinx-2=0 is (1) 3 (2) 5 (3) 7 (4) 9

    The number of values of x iin the interval [0, 3pi] satisfying the equation 2sin^(2)x+5sinx-3=0 is