Home
Class 11
MATHS
Evaluate: 2^(log(3)5)-5^(log(3)2)...

Evaluate: `2^(log_(3)5)-5^(log_(3)2)`

Text Solution

AI Generated Solution

To evaluate the expression \( 2^{\log_{3} 5} - 5^{\log_{3} 2} \), we can use the properties of logarithms and exponents. Let's go through the steps: ### Step 1: Rewrite the expression using the change of base property We know that \( a^{\log_{b} c} = c^{\log_{b} a} \). Therefore, we can rewrite \( 2^{\log_{3} 5} \) as follows: \[ 2^{\log_{3} 5} = 5^{\log_{3} 2} \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 2|4 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (S-1)|44 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos

Similar Questions

Explore conceptually related problems

Evaluate : 3^(2-log_(3)5)

Simplify: 2^((log)_(3)5)-5^((log)_(3)2)

Evaluate (log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3)

Evaluate :((log_(3)(135))/(log_(15)(3)))-((log_(3)(5))/(log_(405)(3)))

The simplified value of the expression : 2^(log_(3)5)*2^(log_(3)5^(2)) - 5^(log_(3)2)*25^((log_(3)2)) is

log_(3)(5+x)+log_(8)8=2^(2)

Find the value of log_(3^(2))5^(4)xxlog_(5^(2))3^(4) .

Evaluate log_(3)4.log_(4)5.log_(5)6.log_(6)7.log_(7)8.log_(8)9