Home
Class 11
MATHS
If x^(2)-4x+5-siny=0, y in [0,2pi], then...

If `x^(2)-4x+5-siny=0, y in [0,2pi]`, then-
A) `x=1, y=0`, B) `x=1, y=pi/2` , C) `x=2, y=0`, `x=2, y=pi/2`

Text Solution

Verified by Experts

D
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 6|3 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 7|1 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 4|4 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos

Similar Questions

Explore conceptually related problems

y=x + sin x,…. x = 0, x=(pi)/(2)

The area under y=2x+sinx between y=0, x=0 and x= pi/2 is

If x, y in [0, 2pi] and sin x + sin y=2 , then the value of x+y is

If sin x+cos x=sqrt(y+(1)/(y)) for x in[0,pi] then x=(pi)/(4) (b) y=0y=1 (d) x=(3 pi)/(4)

The equation of the circle through the points of intersection of x y -1 -0, x y -2x-4 y l 0 and touching the line x 2y 0, is (B) x y 2 x+20 (C) x y (D) 2 (x2 y x 2

The locus of the mid-point of a chord of the circle x^2 + y^2 -2x - 2y - 23=0 , of length 8 units is : (A) x^2 + y^2 - x - y + 1 =0 (B) x^2 + y^2 - 2x - 2y - 7 = 0 (C) x^2 + y^2 - 2x - 2y + 1 = 0 (D) x^2 + y^2 + 2x + 2y + 5 = 0

y-1=m_1(x-3) and y - 3 = m_2(x - 1) are two family of straight lines, at right angled to each other. The locus of their point of intersection is: (A) x^2 + y^2 - 2x - 6y + 10 = 0 (B) x^2 + y^2 - 4x - 4y +6 = 0 (C) x^2 + y^2 - 2x - 6y + 6 = 0 (D) x^2 + y^2 - 4x - by - 6 = 0

Let y =y (x) satisfies the equation (dy)/(dx) - |A|=0, for all x gt 0, where [{:( y, sin x , 1),( 0, -1 ,1),(2, 0, (1)/(x)):}] If y (pi) = pi +2, then the vlaue of y ((pi)/(2)) is :

xdx+secxdy=0, y=0" if " x=(pi)/(2) A) x+y cos y+cos y=(pi)/(2) B) y+x sin x-cosx=(pi)/(2) C) y+x sin x+cos x=(pi)/(2) D) x+y sin y+cos y=(pi)/(2)