Home
Class 11
MATHS
If 0lexltpi/2, then the number of values...

If `0lexltpi/2,` then the number of values of `x` for which `sinx-sin2x+sin3x=0` is

A

2

B

1

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x - \sin 2x + \sin 3x = 0 \) in the interval \( 0 < x < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin x - \sin 2x + \sin 3x = 0 \] We can rearrange it to: \[ \sin x + \sin 3x = \sin 2x \] ### Step 2: Use the sine addition formula Using the sine addition formula, we can express \( \sin 3x \) as: \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Now, substituting this into our equation gives: \[ \sin x + (3 \sin x - 4 \sin^3 x) = \sin 2x \] We also know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the equation as: \[ 4 \sin x - 4 \sin^3 x = 2 \sin x \cos x \] ### Step 3: Factor out common terms Factoring out \( 2 \sin x \) from both sides, we have: \[ 2 \sin x (2 - 2 \sin^2 x) = 2 \sin x \cos x \] Dividing both sides by \( 2 \sin x \) (noting that \( \sin x \neq 0 \) in the interval \( 0 < x < \frac{\pi}{2} \)): \[ 2 - 2 \sin^2 x = \cos x \] ### Step 4: Use the Pythagorean identity Using the identity \( \cos x = \sqrt{1 - \sin^2 x} \), we can substitute into the equation: \[ 2 - 2 \sin^2 x = \sqrt{1 - \sin^2 x} \] Let \( y = \sin x \). The equation becomes: \[ 2 - 2y^2 = \sqrt{1 - y^2} \] ### Step 5: Square both sides Squaring both sides to eliminate the square root gives: \[ (2 - 2y^2)^2 = 1 - y^2 \] Expanding the left side: \[ 4(1 - y^2)^2 = 1 - y^2 \] This simplifies to: \[ 4(4y^4 - 4y^2 + 1) = 1 - y^2 \] Expanding and rearranging gives: \[ 16y^4 - 16y^2 + 4 - 1 + y^2 = 0 \] \[ 16y^4 - 15y^2 + 3 = 0 \] ### Step 6: Let \( z = y^2 \) Let \( z = y^2 \), then we have: \[ 16z^2 - 15z + 3 = 0 \] Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ z = \frac{15 \pm \sqrt{(-15)^2 - 4 \cdot 16 \cdot 3}}{2 \cdot 16} \] Calculating the discriminant: \[ = \frac{15 \pm \sqrt{225 - 192}}{32} \] \[ = \frac{15 \pm \sqrt{33}}{32} \] ### Step 7: Find values of \( y \) Since \( y = \sin x \), we need to find \( y \) values: \[ y^2 = \frac{15 \pm \sqrt{33}}{32} \] We need to check which of these values fall within the range \( 0 < y < 1 \). ### Step 8: Count valid solutions We find the number of valid \( y \) values that correspond to \( x \) values in the interval \( 0 < x < \frac{\pi}{2} \). Each valid \( y \) will correspond to a unique \( x \) in this range. ### Final Answer After evaluating the valid roots, we find that there are **two values** of \( x \) that satisfy the original equation in the given interval.
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (S-1)|44 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JA)|16 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos

Similar Questions

Explore conceptually related problems

If 0<=x<(pi)/(2), then the number of values of x for which sin x-sin2x+sin3x=0, is

If 0 le x le (pi)/(2) , then the number of value of x for which sin x - sin 2x + sin 3x = 0 , is

sin x+sin2x+sin3x=0 if :

sinx+sin3x+sin5x=0

sinx+sin3x+sin5x=0

The set of values of x for which sinx.cos^3x>cosx.sin^3x "in" [0,2pi] ,is

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

ALLEN-BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -EXERCISE (JM)
  1. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  2. 3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(...

    Text Solution

    |

  3. The value of cos(pi/2^(2)).cos(pi/2^(3))……….cos(pi/2^(10)).sin(pi/2^(1...

    Text Solution

    |

  4. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  5. The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real val...

    Text Solution

    |

  6. If cos(alpha+beta)=3/5, sin(alpha-beta)=5/13, and 0 lt alpha, beta lt ...

    Text Solution

    |

  7. The value of cos^2 10^0-cos10^0cos50^0+cos^2 50^0 is equal to 4/3 (b)...

    Text Solution

    |

  8. The value of sin 10.sin 30. sin 50.sin 70 is

    Text Solution

    |

  9. If 0 <= x < 2pi, then the number of real values of x, which satisfy th...

    Text Solution

    |

  10. If the sum of all the solutions of the equation 8 cosx.(cos(pi/6+x)cos...

    Text Solution

    |

  11. If 0lexltpi/2, then the number of values of x for which sinx-sin2x+sin...

    Text Solution

    |

  12. The sum of all values of theta in (0,pi/2) satisfying sin^(2)2theta+co...

    Text Solution

    |

  13. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |

  14. All the pair (x,y) that satisfy the inequality 2^(sqrt(sinx-2sinx+5))....

    Text Solution

    |

  15. The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, ...

    Text Solution

    |

  16. Let S be the set of all alpha in R such that the equation, cos 2x + a...

    Text Solution

    |