Home
Class 11
MATHS
The sum of all values of theta in (0,pi/...

The sum of all values of `theta in (0,pi/2)` satisfying `sin^(2)2theta+cos^(4)2theta=3/4` is

A

`pi/2`

B

`pi`

C

`(3pi)/8`

D

`(5pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^2(2\theta) + \cos^4(2\theta) = \frac{3}{4} \) for \( \theta \) in the interval \( (0, \frac{\pi}{2}) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^2(2\theta) + \cos^4(2\theta) = \frac{3}{4} \] We know that \( \cos^4(2\theta) = (\cos^2(2\theta))^2 \). Let \( x = \cos^2(2\theta) \). Then, \( \sin^2(2\theta) = 1 - x \). Substituting this into the equation gives: \[ 1 - x + x^2 = \frac{3}{4} \] ### Step 2: Rearranging the equation Rearranging the equation, we have: \[ x^2 - x + 1 - \frac{3}{4} = 0 \] This simplifies to: \[ x^2 - x + \frac{1}{4} = 0 \] ### Step 3: Solving the quadratic equation Now, we can solve the quadratic equation \( x^2 - x + \frac{1}{4} = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -1, c = \frac{1}{4} \). Calculating the discriminant: \[ b^2 - 4ac = (-1)^2 - 4 \cdot 1 \cdot \frac{1}{4} = 1 - 1 = 0 \] Since the discriminant is 0, there is one real solution: \[ x = \frac{1 \pm 0}{2} = \frac{1}{2} \] ### Step 4: Finding \( \cos^2(2\theta) \) Since \( x = \cos^2(2\theta) \), we have: \[ \cos^2(2\theta) = \frac{1}{2} \] Taking the square root gives: \[ \cos(2\theta) = \frac{1}{\sqrt{2}} \quad \text{or} \quad \cos(2\theta) = -\frac{1}{\sqrt{2}} \] However, since \( \theta \) is in \( (0, \frac{\pi}{2}) \), we only consider: \[ \cos(2\theta) = \frac{1}{\sqrt{2}} \] ### Step 5: Finding \( 2\theta \) The solution for \( \cos(2\theta) = \frac{1}{\sqrt{2}} \) gives: \[ 2\theta = \frac{\pi}{4} + 2k\pi \quad \text{or} \quad 2\theta = -\frac{\pi}{4} + 2k\pi \] For \( k = 0 \): 1. \( 2\theta = \frac{\pi}{4} \) implies \( \theta = \frac{\pi}{8} \) 2. \( 2\theta = -\frac{\pi}{4} \) is not in the range since \( \theta \) must be positive. ### Step 6: Conclusion Thus, the only solution for \( \theta \) in \( (0, \frac{\pi}{2}) \) is: \[ \theta = \frac{\pi}{8} \] ### Final Answer The sum of all values of \( \theta \) satisfying the equation in the interval \( (0, \frac{\pi}{2}) \) is: \[ \frac{\pi}{8} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (S-1)|44 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JA)|16 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos

Similar Questions

Explore conceptually related problems

The sum of all values of theta in (0 , pi) satisfying sin^(2) 2 theta + cos^(4) 2 theta = 1 is:

The number of values of theta , satisfying the conditions sin^(2)theta+cos^(4)theta=(3)/(4) and cos thetalt(1)/(2) in the interval (-pi,2 pi) is

The number of values of theta in [0,2 pi] satisfying the equation 2sin^(2)theta=4+3cos theta are

The sum of all values of theta belonging to [0,pi] and satisfying sin3 theta=(sqrt(3))/(2) is

The sum of all values of theta belonging to [0,pi] and satisfying sin3 theta=(sqrt(3))/(2) is

The number of values of theta in[0,2 pi] that satisfy the equation sin^(2)theta-cos theta=(1)/(4)

The number of values of theta in the range [0,2 pi] satisfying the equation cos^(4)2 theta+2sin^(2)2 theta=17(sin theta+cos theta)^(8) is

The value of theta lying between 0 and (pi)/(2), and satisfying ,,1+sin^(2)theta,cos^(2)theta,4sin4 thetasin^(2)theta,1+cos^(2)theta,4sin4 thetasin^(2)theta,cos^(2)theta,1+4sin4 theta]|=0

The number of values of x lying in [-pi,pi] and satisfying 2sin^(2)theta=cos2 theta and sin2 theta+2cos2 theta cos theta-1=0 is

ALLEN-BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -EXERCISE (JM)
  1. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  2. 3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(...

    Text Solution

    |

  3. The value of cos(pi/2^(2)).cos(pi/2^(3))……….cos(pi/2^(10)).sin(pi/2^(1...

    Text Solution

    |

  4. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  5. The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real val...

    Text Solution

    |

  6. If cos(alpha+beta)=3/5, sin(alpha-beta)=5/13, and 0 lt alpha, beta lt ...

    Text Solution

    |

  7. The value of cos^2 10^0-cos10^0cos50^0+cos^2 50^0 is equal to 4/3 (b)...

    Text Solution

    |

  8. The value of sin 10.sin 30. sin 50.sin 70 is

    Text Solution

    |

  9. If 0 <= x < 2pi, then the number of real values of x, which satisfy th...

    Text Solution

    |

  10. If the sum of all the solutions of the equation 8 cosx.(cos(pi/6+x)cos...

    Text Solution

    |

  11. If 0lexltpi/2, then the number of values of x for which sinx-sin2x+sin...

    Text Solution

    |

  12. The sum of all values of theta in (0,pi/2) satisfying sin^(2)2theta+co...

    Text Solution

    |

  13. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |

  14. All the pair (x,y) that satisfy the inequality 2^(sqrt(sinx-2sinx+5))....

    Text Solution

    |

  15. The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, ...

    Text Solution

    |

  16. Let S be the set of all alpha in R such that the equation, cos 2x + a...

    Text Solution

    |