Home
Class 11
PHYSICS
A parallelogram ABCD. Prove that vec(AC)...

A parallelogram ABCD. Prove that `vec(AC)+ vec (BD) = 2 vec(BC)`'

Text Solution

AI Generated Solution

To prove that \(\vec{AC} + \vec{BD} = 2 \vec{BC}\) in a parallelogram ABCD, we will follow these steps: ### Step 1: Define the vectors In a parallelogram ABCD, we can define the vectors as follows: - Let \(\vec{AB} = \vec{u}\) - Let \(\vec{BC} = \vec{v}\) From the properties of a parallelogram, we know: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let vec(BE)=4vec(EC) and vec(CF)=4vec(FD) . If the line EF meets the diagonal AC in G, then vec(AG)=lambda vec(AC) , where lambda is equal to :

ABCD is a parallelogram Fig. 2 (c ) .64. AC and (BD) are its diagonals. Show that (a) vec (AC) +vec (BD) =2 vec (BC) (b) vec (AC) - vec (BD) =2 vec (AB) .

In the parallelogram ABCD,vec AC^(2)-vec BD^(2)=

The diagonals of the parallelogram ABCD intersect at E. If vec a,vec b,vec c and vec a be the position vectors of its vertices with respect to an arbitrary origin O, then show that vec a+vec b+vec c+vec d=4 vec(OE) .

In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCD is a parallelogram and AC, BD are its diagonals. Show that : vec(AC)+vec(BD)=2vec(BC), vec(AC)-vec(BD)=2vec(AB) .