Home
Class 11
PHYSICS
Given vecF=(4hati-10hatj)and vecr=(5hati...

Given `vecF=(4hati-10hatj)and vecr=(5hati-3hatj)`. then torque `vectau` is

Text Solution

Verified by Experts

Here `vecr= 5hati -3hatj +0hatk and vecF= 4hati-10hatj+0hatk`
`therefore vectau = vecrxx vecF= |{:(hati,,hatj,,hatk),(5,,-3,,0),(4,,-10,,0):}| = hati(0-0)- hatj (0-0) +hatk(-50+12)= -38hatk`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Considering two vectors, F = (4hati - 10hatj) netwon and vecr = (-5hati - 3hatj) m compute (vecrr xx vecF) and states what physical quaninty it respresents ?

If vecF=2hati+3hatj-hatk and vecr=hati-hatj+6hatk find vecrxxvecF

If vecF=hati+2hatj-3hatk and vecr=2hati-hatj+hatk find vecrxxvecF

If vecomega=2hati-3hatj+4hatk and vecr=2hati-3hatj+2hatk then the linear velocity is

If the equation of the plane through the line of interesection of vecr.(2hati-3hatj+hatk)=1 and vecr.(hati-hatj)+4=0 and perpendicular to vecr.(2hati+hatj+hatk)+8=0 is vecr.(5hati-2hatj-12hatk)=lamda Then lamda=

Angle between the line vecr=(2hati-hatj+hatk)+lamda(-hati+hatj+hatk) and the plane vecr.(3hati+2hatj-hatk)=4 is

Find the angle between the line vecr=(hati+2hatj-hatk)+lamda(hati-hatj+hatk) and the plane vecr.(2hati-hatj+hatk)=4

Find the angle between the line vecr=(hati+hatj-2hatk)+lambda(hati-hatj+hatk) and the plane vecr.(2hati-hatj+hatk)=4 .

A force vecF=6xhati+2yhatj displaces a body from vecr_1=3hati+8hatj to vecr_2=5hati-4hatj . Find the work done by the force.