Home
Class 11
PHYSICS
If vecA= hati+2hatj+3hatk, vecB=-hati+ha...

If `vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk`, then find the angle between the vector `(vecA+vecB+vecC) and (vecAxx vecB)` in degrees.

Text Solution

Verified by Experts

Let `vecP = vecA + vecB+vecC= 3hati-5hatk and vecQ= vecAxx vecB= |{:(hati,,hatj,,hatk),(1,,2,,3),(-1,,1,,4):}|= 5hati-7hatj+3hatk`
Angle between `vecP & vecQ` is given by `cos theta = (vecP*vecQ)/(PQ) = (15-15)/(PQ) = 0 rArr theta = 90^(@)`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

If vecA=2hati+hatj-hatk. vecB=hati+2hatj+3hatk and vecC=6hati-2hatj-6hatk then the angle between (vecA+vecB) and vecC will be :-

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

vecA=4hati+4hatj-4hatk and vecB=3hati+hatj+4hatk , then angle between vectors vecA and vecB is

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC