Home
Class 11
PHYSICS
If 3costheta + 4sin theta = A sin (theta...

If `3costheta + 4sin theta = A sin (theta +alpha)`, then values of A and `alpha` are

A

`5*cos^(-1)((3)/(5))`

B

`5, sin^(-1)((3)/(5))`

C

`7, sin^(-1)((4)/(5))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos \theta + 4 \sin \theta = A \sin(\theta + \alpha)\), we will follow these steps: ### Step 1: Rewrite the left-hand side We start with the left-hand side: \[ 3 \cos \theta + 4 \sin \theta \] We can express this in the form \(R \sin(\theta + \alpha)\) using the identity: \[ R \sin(\theta + \alpha) = R (\sin \theta \cos \alpha + \cos \theta \sin \alpha) \] This means we need to find \(R\) and \(\alpha\) such that: \[ R \cos \alpha = 3 \quad \text{and} \quad R \sin \alpha = 4 \] ### Step 2: Calculate \(R\) To find \(R\), we use the Pythagorean theorem: \[ R = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 3: Find \(\alpha\) Now, we can find \(\alpha\) using the relationships we established: \[ \cos \alpha = \frac{3}{R} = \frac{3}{5} \quad \text{and} \quad \sin \alpha = \frac{4}{R} = \frac{4}{5} \] Thus, we can find \(\alpha\) using: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{4/5}{3/5} = \frac{4}{3} \] From this, we can find \(\alpha\) using the inverse tangent: \[ \alpha = \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 4: Final Values From the calculations: - The value of \(A\) is \(5\). - The value of \(\alpha\) can be expressed as: \[ \alpha = \sin^{-1}\left(\frac{4}{5}\right) \quad \text{or} \quad \alpha = \tan^{-1}\left(\frac{4}{3}\right) \] ### Conclusion Thus, the values of \(A\) and \(\alpha\) are: \[ A = 5, \quad \alpha = \sin^{-1}\left(\frac{4}{5}\right) \]

To solve the equation \(3 \cos \theta + 4 \sin \theta = A \sin(\theta + \alpha)\), we will follow these steps: ### Step 1: Rewrite the left-hand side We start with the left-hand side: \[ 3 \cos \theta + 4 \sin \theta \] We can express this in the form \(R \sin(\theta + \alpha)\) using the identity: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-IV ASSERTION & REASON|11 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-II AIPMT/NEET & AIIMS (2006- 2018)|6 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If 3 cos theta+4 sin theta=A sin (theta+alpha) , then values of A and alpha are

If sin theta=3sin(theta+2 alpha), then the value of tan(theta+alpha)+2tan alpha is

If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta + alpha) + 2 tan alpha is

If sin(theta+alpha)=cos(theta+alpha) then the value of tan theta is

If m sin theta=n sin(theta+2 alpha), then tan(theta+alpha)=

If alpha , beta alpha ne beta satisfies the question a costheta + b sin theta = c , then the value of tan ( (alpha + beta)/(2) ) is :

If cos7theta=costheta-sin4theta , then the general value of theta is