Home
Class 12
MATHS
The value of a for which the function f...

The value of `a` for which the function `f(x)=(4a-3)(x+log5)+2(a-7)cotx/2sin^2x/2` does not possess critical points is (a)`(-oo,-4/3)` (b) `(-oo,-1)` (c)`[1,oo)` (d) `(2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cot(x/2)sin^2(x/2) does not possess critical points is (a) (-oo,-4/3) (b) (-oo,-1) (c) [1,oo) (d) (2,oo)

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cot(x/2)sin^2(x/2) does not possess critical points is (a) (-oo,-4/3) (b) (-oo,-1) (c) [1,oo) (d) (2,oo)

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)(cot x)/(2)(sin^(2)x)/(2) does not possess critical points is (-oo,-(4)/(3)) (b) (-oo,-1)(c[1,oo)(d)(2,oo)

The set of value(s) of a for which the function f(x)=(a x^3)/3+(a+2)x^2+(a-1)x+2 possesses a negative point of inflection is (a) (-oo,-2)uu(0,oo) (b) {-4/5} (c) (-2,0) (d) empty set

The set of value(s) of a for which the function f(x)=(a x^3)/3+(a+2)x^2+(a-1)x+2 possesses a negative point of inflection is (a) (-oo,-2)uu(0,oo) (b) {-4/5} (c) (-2,0) (d) empty set

The set of value(s) of a for which the function f(x)=(a x^3)/3+(a+2)x^2+(a-1)x+2 possesses a negative point of inflection is (-oo,-2)uu(0,oo) (b) {-4/5} (-2,0) (d) empty set

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)