Home
Class 11
MATHS
2^|x+2| - | 2^(x+1) -1 | = 2^(x+1) +1...

`2^|x+2| - | 2^(x+1) -1 | = 2^(x+1) +1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation 2^(|x+2|)-|2^(x+1)-1|=2^(x+1)+1

(x-1) / (2x + 1) + (2x + 1) / (x-1) = (5) / (2), x! =-(1) / (2), 1

Let x_(1) , x_(2) , x_(3) be the solution of tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where x_1 2x_(1) + x_(2) + x_(3)^(2) is equal to

Solve for x : (x - 1)/(2x + 1) + (2x + 1)/(x -1) = 2 , where x ne - (1)/(2) , 1

The factor of x^8 + x^4 +1 are (A) (x^4 + 1 - x^2), (x^2 +1 +x), (x^2 + 1 - x ) (B) x^4 + 1 -x^2 , (x^2 - 1 + x), (x^2 +1 + x) (C ) (x^4 - 1 + x^2, (x^2 - 1 + x), (x^2 + 1 + x) (D) (x^4 -1 + x^2), (x^2 + 1 - x), (x^2 + 1 +x)