Home
Class 10
MATHS
Find the least positive value of x in de...

Find the least positive value of x in degrees for which `tanx=(cos5^0cos20^0+cos35^0cos50^0-sin5^0sin20^0-sin35^0sin50^0)/(sin5^0cos20^0-sin35^0cos50^0+cos5^0sin20^0-cos35^0sin50^0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the least positive x in degree for which tanx=(cos5^0cos20^0+cos35^0cos50^0-sin5^0sin20^0-sin35^0sin50^0)/(sin5^0cos20^0-sin35^0cos50^0+cos5^0sin20^0-cos35^0sin50^0)

Find the least positive x in degree for which tan x= (cos5^(@)cos20^(@)+cos35^(@)cos50^(@)-sin5^(@)sin20^(@)-sin35^(@)sin50^(@))/(sin5^(@)cos20^(@)-sin35^(@)cos50^(@)+cos5^(@)sin20^(@)-cos35^(@)sin50^(@))

The smallest positive value of x (in degrees) for whichcos tanx=(cos5^@ cos 20^@ + cos 35^@ cos 50^@-sin 50^@ sin 20^@ - sin35^@ sin50^@)/(sin5^@ cos 20^@ - sin 35^@ cos 50^@ + cos 5^@ sin 20^@ - cos 35^@ sin 50^@) is equal to

The smallest positive value of x (in degrees) for whichcos tanx=(cos5^@ cos 20^@ + cos 35^@ cos 50^@-sin 50^@ sin 20^@ - sin35^@ sin50^@)/(sin5^@ cos 20^@ - sin 35^@ cos 50^@ + cos 5^@ sin 20^@ - cos 35^@ sin 50^@) is equal to

The smallest positive value of x (in degrees) for whichcos tan x=(cos5^(@)cos20^(@)+cos35^(@)cos50^(@)-sin50^(@)sin20^(@)-sin35^(@)sin50^(@))/(sin5^(@)cos20^(@)-sin35^(@)cos50^(@)+cos5^(@)sin20^(@)-cos35^(@)sin50^(@))

cos25^(0)cos35^(0)-sin10^(0)sin20^(0) ,

(2cos 40^0-cos 20^0)/(sin 20^0)=

Find the value of x in each of the following: (i) tan3x=sin45^0cos45^0+sin30^0 , (ii) cosx=cos60^0cos30^0+sin60^0sin30^0 , (iii) sin2x=sin60^0cos30^0-cos60^0sin30^0dot

Find the value of x in each of the following: (i)tan3x=sin45^0cos45^0+sin30^0, (ii)cosx=cos60^0cos30^0+sin60^0sin30^0 , (iii)sin2x=sin60^0cos30^0-cos60^0sin30^0dot

If cos25^0+sin25^0=p , then cos50^0 is