Home
Class 11
MATHS
tan alpha,tan beta,tanγ are roots of t...

`tan alpha,tan beta,tanγ ` are roots of the equation `au^(3)+(2a-x)u+y=0` for fixed `x` and ` y` .and `tan alpha +tan beta=h` then `ah^(3)+(2a-x)h=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha tan beta are the roots of the equation x^(2)+px+q=0(p!=0) then

If 2tan alpha=3tan beta then tan(alpha-beta)=

If tan alpha, tan beta, tan lambda are the roots of the equation x^(3) - px^(2) - r = 0 then the value of (1+tan^(2) alpha) (1+tan^(2) beta)(1+tan^(2)lambda) =

Given that tan alpha and tan beta are the roots of the equation x^(2)+bx+c=0 with bne0 . What is tan(alpha+beta) equal to ?

IF alpha,beta are the roots of the equation 6x^(2)-5x+1=0 , then the value of tan^(-1)alpha+tan^(2)beta is